New Adhesive Systems Based on Functionalized Block Copolymers

نویسندگان

  • M. Kent
  • D. Zamora
چکیده

The goal of this work was to evaluate chemically-functionalized block copolymers as adhesion promoters for metal/thermoset resin interfaces. Novel block copolymers were synthesized which contain pendant functional groups reactive toward copper and epoxy resins. In particular, imidazole and triazole functionalities that chelate with copper were incorporated onto one block, while secondary amines were incorporated onto the second block. These copolymers were found to self-assemble from solution onto copper surfaces to form monolayers. The structure of the adsorbed monolayers were studied in detail by neutron reflection and time-of-flight secondary ion mass spectrometry. The monolayer structure was found to vary markedly with the solution conditions and adsorption protocol. Appropriate conditions were found for which the two blocks form separate layers on the surface with the amine functionalized block exposed at the air surface. Adhesion testing of block copolymer-coated copper with epoxy resins was performed in both lap shear and peel modes. Modest enhancements in bond strengths were observed with the block copolymer applied to the native oxide. However, it was discovered that the native oxide is the weak link, and that by simply removing the native oxide, and then applying an epoxy resin before the native oxide can reform, excellent bond strength in the as-prepared state as well as excellent retention of bond strength after exposure to solder in ambient conditions are obtained. It is recommended that long term aging studies be performed with and without the block copolymer. In addition, the functionalized block copolymer method should be evaluated for another system that has

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of poly ethylene glycol -based block copolymers for biomedical applications

Nanostructure fabrication from block copolymers is discussed in this review paper. Particularly, novel approaches for the Ž . Ž . construction of functionalized poly ethylene glycol PEG layers on surfaces were focused to attain the specific adsorption of a target protein through PEG-conjugated ligands with a minimal non-specific adsorption of other proteins. Furthermore, surface organization of...

متن کامل

Synthesizing amphiphilic block copolymers through macromolecular azo-coupling reaction.

This communication reports a new approach to synthesize amphiphilic block copolymers. The copolymers with well-defined structures were synthesized by macromolecular azo-coupling reaction between the diazonium salt of aniline-functionalized PEG and the polymeric blocks with a terminal suitable for the azo-coupling reaction.

متن کامل

Nanoparticle ordering via functionalized block copolymers in solution.

We consider nanoparticles and functionalized copolymers, block copolymers with attached end groups possessing a specific affinity for nanoparticles, in solution. Using molecular dynamics, we show that nanoparticles are able to direct the self-assembly of the polymer/nanoparticle composite. We perform a detailed study for a wide range of nanoparticle sizes and concentrations. We show that the na...

متن کامل

Adhesion properties of catechol-based biodegradable amino acid-based poly(ester urea) copolymers inspired from mussel proteins.

Amino acid-based poly(ester urea) (PEU) copolymers functionalized with pendant catechol groups that address the need for strongly adhesive yet degradable biomaterials have been developed. Lap-shear tests with aluminum adherends demonstrated that these polymers have lap-shear adhesion strengths near 1 MPa. An increase in lap-shear adhesive strength to 2.4 MPa was achieved upon the addition of an...

متن کامل

Block copolymers from ionic liquids for the preparation of thin carbonaceous shells

This paper describes the controlled radical polymerization of an ionic-liquid monomer by RAFT polymerization. This allows the control over the molecular weight of ionic liquid blocks in the range of 8000 and 22000 and of the block-copolymer synthesis. In this work we focus on block copolymers with an anchor block. They can be used to control the formation of TiO2 nanoparticles, which are functi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997